Our Work

A Few Recent Clients

 

SFL worked with Salesforce’s HR department to accurately map employees and their skills. We created a topic model of text-based employee data that corresponded to well understood skillsets. By mixing in some semi-supervised learning, we developed a probabilistic modelling of how all employees would fit in every job role, thus allowing for automatic internal transfer recommendations. 

 

Our team helped Goodyear to model cord compression under axial loads. We performed material science research and created an analytic modelling of both structural integrity and the maximum safe load for various composite materials under real-world conditions. 

We worked in conjunction with Anheuser-Busch to model their beverage sales. SFL performed Market Analysis to determine high-value customers and overall spending patterns for AB's entire Mexican operation. From this information, SFL provided online retail and distribution strategies to maximize overall profitability. 

Staples and SFL joined together to model within company wage-gaps.  SFL developed a machine learning algorithm to determine the existence and extent of a wage gap in employee data. From here, SFL worked hand-in-hand with Staples to understand the significant contributors to the wage gap and made key business recommendations from the data.

SE Energy and Climate

SFL performed anomaly detection in time-series energy grid data to detect fraudulent customers in the Danish SE energy company. We used dynamic time-warping and statistical anomaly detection methods to automatically detect fraudulent customer activity.

Cunesoft Logo

Our team worked with Cunesoft to create a novel Information Extraction algorithm to solve their data science requirements. We built custom Natural Language Programming software that successfully extracted ten classes of pertinent information in seven different languages. 

 

Wink Health logo

SFL helped WinkHealth create a machine learning algorithm to detect sleep apnea from raw audio data. A probabilistic score was provided for events in the data that were suspected apnea events. Our algorithm allowed automatic detection of sleep apnea, which can be used to replace expensive and time-consuming sleep studies performed at clinics.

 

Metacog Logo

We worked with Metacog to bridge the gap between Artificial Intelligence and automating educational assessment by optimizing human learning and performance. Using this AI, the student improves their technical, college, and career readiness.

NTT Communications Logo

SFL performed a market segmentation analysis for a large Japanese retailer. The dataset consisted of millions of historic purchases for tens of thousands of clients. Seven segments were created using a hierarchical clustering algorithm and a deep profile was created for each.

 

CA Marketing logo

Our team developed a real-time object detection platform using state-of-the-art deep learning to detect and track objects in live video streams. This work enabled the launch of the C&A's flagship product.

LinkSquares Logo

SFL created an information extraction system to correctly and automatically identify contractual legal information core to their business model, saving tens of man hours per document.                

 

Cybric cybersecurity

SFL worked with Cybric to add machine intelligence on top of their state-of-the-art orchestration platform. We developed a data science platform to predict vulnerabilities in various cybersecurity related scenarios.

Bullhorn Logo

SFL developed a set of machine learning models to determine the top attributes that are most deterministic of winning a client deal. Our work enabled the Bullhorn to optimize their sales process and maximize sales.